
CLaSSiC Project August 1993
Manuscript CLaSSiC-93-32

AD-A269 188

3D Composite Grids Using Bezier Curves
and Surfaces in

Component Adaptive Methods

Ramana G. Venkata
Steven C. Suhr
Joseph Oliger

Joel H. Ferziger ,* -

Center for Large Scale Scientific Computation
Building 460, Room 313

10 Stanford University
W 0 Stanford, California 94305

-I) -.- '•4 Wprovod |o? public Xo1eS41S:

\

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

I

3D COMPOSITE GRIDS USING BiZIER CURVES AND SURFACES IN
COMPONENT ADAPTIVE METHODS*

RAMANA G. VENKATAI, STEVEN C. SUHRI, JOSEPH OLIGERS, AND JOEL H. FERZIGER1

Abstract. We discuss the use of component adaptive methods for the solution of time-dependent partial differen-
tial equations on complex geometries. After a brief exposition of the system and language requirements for an efficient
use of these methods we describe a grid generation procedure M-E.S.H, built upon Bizier constructs, coupled with a
graphical editor VOUS to serve as a visualization platform, and a programming language Vorpal designed to facilitate
their implementation. We also discuss the interaction of the various components of our system and their interfaces.

Key words, component adaptive methods, composite grids, 3D grid generation, NURBS, interactive in-
put/visualization, programming language

AMS subject classifications. 65M50, 65D17, 68N15

1. Introduction. We will discuss a software system which uses component adaptive methods
to solve large-scale scientific problems on complex geometries, whose solutions are governed by
time-dependent partial differential equations. These methods are designed to provide an efficient
representation of the problem domain and its solution. We will describe the basic methods in
section 2. In section 3 we will summarize the system and language needs identified in trying to
implement these methods in an interactive scientific computing environment. In section 4 we will
describe the grid generation module M*E*S*It, which was built using the Bezier curves, B-Splines
and NURBS as the primary means of representation of the domain geometry into the system. In
section 5 we will discuss an interactive visual editing system, VOUS, which can be used to input the
definition of the domain and for program development. In section 6 a language Vorpal, designed to
solve some of our other implementation difficulties, will be described.

2. An Overview of Compo-ent Adaptive Methods. Introducing the notation for our
discussion, suppose that, the problem we wish to solve is written as

(1) ut = Lu+f on Q x[0, T]
(2) u(O) uo on (

(3) Bu = b on OX2x[0,T]

where S1 C Rd is a bounded domain in the physical space and L is a partial differential operator on
Q. We assume this to be a well-posed initial boundary value problem. Let Qh be a discrete grid
on Q2 and Oa2h a discretization of aQ. Let vh(t) be a grid function defined on Qh and 490h at time

t 0, k, 2k
We will now discuss the use of difference methods on these grids. Without specifying a particular

choice of method, let us assume that it is stable and p-th order accurate. The necessary form of
stability is discussed in [14]. Without loss of generality, and avoiding complicated notation, we write

* This work has been supported by the Office of Naval Research under grants N00014-90-J-1344 and N00014-89-
J-1815. Some of the funds for the support of this study have been allocated by the NASA-Ames Research Center,
Moffett Field, California, under Interchange No. NAC 2-440 and by NASA via Contract NAS 2-13721 between NASA
and the Universities Space Research Association (USRA).

I Department of Computer Science, Stanford University, Stanford, CA, 94305 (rsunaasccm.Stanford. MDU).
I Research Institute for Advanced Computer Science (RIACS), NASA Ames Research Center, Moffett Field. CA

94035-1000 (ssuhreriacs.odu).
I Department of Computer Science, Stanford University, Stanford, CA, 94305 (oligertsccm.Stanford.EDU).

I Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305
(ferzigerfscco.Stanford. EDO).

1I

I

2 VENKATA, SUHR, OLIGER, AND FERZIGER 4
our method in explicit one-step form as

(4) vh(t + k) = Lh Vh(t) + kfh(t) on f/h X[0,,TIk

(5) Vh(O) = Uoh on fQj

(6) Bhvh(t) = bh,k on af/h X [0,T]k

where we use subscripts to denote projections onto the appropriate grids. If Uh is the projection of
the solution of the system (1) - (3) onto Oh, since we have assumed our method to be p-th order
accurate, then

(7) uh(t+k) = Lhuh(t)+kfh(t)+rh(t) on Ox [0, 7Tk

(8) Th(t) = O(khP)

where rt is the local truncation error. We will use this same notation on the piecewise uniform grids
we will discuss next.

2.1. Component Grids. We begin by forming a base composite grid

(9) Go = UGO'j

which will be characterized by a discretization parameter h0. This is illustrated in Figure 1 where

GII

G

i•cce-ion For

NTIS C..AM

Dir cu. td LI

DB y G I'

;--1,iaboJy Codes

i _' A dnd !'dor
U. '11 Oll

1G
1,4

FiG. 1. Adaptive Comnposite Grid Structure

Go consists of the component grids Go,,, Go,2 and Go,3 (ignore the shaded regions for the moment).
G0,2 is a stairstep grid with grid lines parallel to the coordinate axes. No coordinate transformation
is needed to solve our equations on this grid. The curvilinear grids G0o1 and G0 ,3 are defined by

@ • •• • •• •I

I

3D COMPOSITE GRIDS IN COMPONENT ADAPTIVE METHODS 3

specifying their boundarie ahid cuts. Rectangular grids in computational space are then mapped
onto these grids in physical space using coordinate transformations. The equations are also corre-
spondingly mapped and solved in computational space. To reduce clutter in Figure 1, grids G0,1
and G0,3 are shown only in computational space.

Although the regions are discretized with equally spaced grid lines parallel to the axes in the
computational coordinate system, the lines in the physical space are in general unevenly spaced.
With its dual role of controlling the convergence of the method while maintaining stability, the
discretization parameter h0 characterizes the grid spacings in two ways:

(i) The distance between neighboring grid lines in physical space is at least ho.
(ii) The distance between neighboring grid lines in each coordinate direction in the computa-

tional space is proportional to h0.
The component grids are chosen so as to obtain a sufficiently accurate representation of 0Of by

O62h,. ho is an estimate of the step size required to obtain a sufficiently accurate approximation of
the solution over at least some specified fraction of the domain.

The most general grids intended to be supported in our system are mapped grids which are
stairstep grids in the computational coordinates. We have illustrated our component grid structure in
R2 ; the generalization of stairstep grids to R3 is done in the obvious way. Curved grids are generalized
to R' by mapping rectangular parallelepipeds in the computational space into the physical space.

2.2. Componcnt Adaptive Grids. The component grids described in the last subsection
were chosen to describe the domain and its boundary. In this subsection, we will describe the use
of adaptive grids which are created and destroyed during the course of the computation in order to
maintain sufficient accuracy through the entire domain.

During this process, we will create L - 1 additional refinement levels of composite grids G1, I =
1, 2 ... , L - 1, on top of the base grid Go. These will have spatial discretization parameters
ht = ho / ml, where usually the refinement factor m = 2,3 or 4. We have occasionally used L as
large as 8 but usually L = 2,3 or 4. As dictated by the nature of the problem and the numerical
algorithm, we maintain an appropriate relationship between the spatial and temporal discretization
parameters, hi and ki. In particular, for problems which are essentially hyperbolic in character, we
usually use the same mesh ratio on all levels, i.e.

(10) A = k,/ hi = constant

We require that these grids be level nested, i.e. the region Gi is fully contained within the region
Gi-i. See the shaded refined grids Gj,, G1,2, G1,3 and G1, 4 in Figure 1 (to reduce clutter, we show
the refined grids G1,2 and G1,4 only in computational space). Since these grids have the same mesh
ratio, they have the space-time structure illustrated in Figure 2. We take several time steps on the
finer grid for each time step on the coarser grid.

t

XI

FIG. 2. Space.time grid structure

We generate the refinement grids in response to computed error estimates. If the solution
is sufficiently smooth, we can use a variant of Richardson extrapolation, called step-doubling, to

L • • •• • •

S S S 0 S

4 VENKATA, SUHR, OLIGER, AND FERZIGER 4
estimate the local truncation error Th. If Vh is the solution on an h - k grid and V2h is the solution
on a 2h - 2k grid, then it can be shown that

Vh - V25h hp 1)(1 Irk + 0k2(2P-1)

Since rl, can also be written as

(12) rh = khPrh

where rh is the projection of a smooth function (which is bounded independent of h) onto the h-grid,
we can compute rh using (11) and then rh using (12) at any given grid point. Since we know rh, if
we then require that h be chosen such that

(13) I1hI _ 6

for a suitable local error tolerance 6, we can use (12) and (10) to obtain the bound

(14) h < (b /(A I rh D))1'(P+1)

We can then find the largest h, which satisfies this inequality. Alternatively, (13) may simply be
used as an error criterion in the grid-modification procedure described below.

2.3. Adaptive Grid Generation and Integration. With this basic background, we will
now explain the adaptive grid generation and integration processes. It is important to organize the
data structure for the adaptive composite grid in terms of connected components, i.e. connected
sets of component grids at each level. Since the grids are level-nested, this organization yields a tree
based on containment. See Figure 3 for the tree representing the grid structure in Figure 1.

G ,G ,G
0,1 0,2 0,3

@I

FIG. 3. Tree structure of connected eomponenta

Evaluation of h0 . Having begun with an estimated initial value of h0 , we perform a trial
integration on this grid and estimate the error. If more than a given fraction, say 1/2,
of the grid fails to meet the error criterion and needs to be refined, we refine the whole
grid with ho reduced by a factor of m, repeating this process if necessary. (This overall
refinement is also done during the course of the computation, if appropriate.) The fraction
1/2 is used because of the overhead associated with grid refinement. It has been ascertained
experimentally that about 3/4 of a domain can be refined (with the associated overhead)
at the same computational cost as refining the entire domain. Once ho is established or
reevaluated, the other hi are established.

S I I I I I II I | 11I ll - S III I I IIS

3D COMPOSITE GRIDS IN COMPONENT ADAPTIVE METHODS 5

Time integration. The solution is advanced in time as follows. The basic operation is to
solve on a connected component. A time step of ko is first taken on Go, and then each
grid G1, I = 1, 2, ... , L - 1 is in turn advanced by ki, connected component by connected
component. Then GL-1 is brought up to t+kL_2 and so on, until all of the grids are brought
up to t + k0 . Whenever a refinement is brought up to the time level of the next coarser
grid, the point values on the coarser grid under the refinement are replaced by averages of
the solution on the refinement. Values of the solution on the interior edges of connected
components at each level are obtained by interpolating in time the values already obtained
on the next coarser grid. It is important that this interpolation be accurate to order p to
maintain the optimal rate of convergence.

Grid modification. Errors are estimated at fixed intervals of time steps on each grid level,
usually every 4 to 8 steps, by a process of trial integration. Points at which the error crite-
rion is near violation are flagged, clusters of the flagged points are formed, and refinements
overlaying the clusters are constructed. Once a new component grid is defined, the solution
at previously refined points is retained, and the solution at all other points is obtained by
interpolation accurate to order p from the parent grid. (At the initial time, in contrast, the
solution at each refinement level is obtained from the initial data u0.) The refined grids
are constructed with buffer zones around the flagged points, sufficiently wide so that a phe-
nomenon requiring refinement cannot move off the refined area before the next regridding.
This is necessary to maintain accuracy and to prevent instability [4]. The grids are zoved
by constructing a new grid and deleting the oHl one, see Figure 2. Each refinement level is in
turn refined as necessary in the same manner, until the finest level has been reconstructed.

Component Methods. The idea of component methods is quite simple within the current
framework. We need not use the same solver or even solve the same equations on every
grid. For instance, if we are solving a problem with isolated shocks and boundary layers,
we can use a high order method where the solution is smooth and a special shock tracking
or fitting method it, the neighborhood of shocks, or solve inviscid equations outside of the
boundary layers and viscous equations inside. We label the individual grids with the solver
to be used therein, and provide a collection of appropriate solvwrs

3. System and Language Needs. The implementation and use of component adaptive meth-
ods poses several challenges. Since these are usually large computations that run for long periods
of time on remote machines, it is convenient to be able to run them interachvely so that the user
can check on the progress of the calculations from a desk-top workstation, or ask for certain in-
termediate results to be downloaded to a visualization station. The user may wish to interrupt
the simulation and modify the model or data, before continuing. So a certain amount of real-time
control is desirable.

The geometrical definition of the lase grid which covers the domain is a human-intensive task. It
is essential to have interactive tools to aid the user in the specification, visualization and organization
of the data.

As a secondary motivation for including interactivity in our system, we believe that in the future,
programs will often be visualization-driven. In response to the request, "show the temperature field
in region A (specified by drawing on the screen) at time t within an error tolerance of C," a system
would automatically perform the calculations needed to deliver the desired result. Our current work
anticipates extensions in this direction.

Once the geometrical definitions of the bounding curves and surfaces of the domain are input
to the system, we need a grid generator to compute the parametrization (mapping) of the various
component grids and the corresponding transformation metrics. This requires an appropriate choice
for the representation of the geometrical objects and access to a variety of grid generation algorithms
to tackle widely different domains. Efficient algorithms for the coordinate inversion are also required.

0P

6 VENKATA, SUHR, OLIGER, AND FERZIGER

The adaptive model requires a lot of software to manage the grid structure. It is too expensive to
rewrite this code for every application. So we need a system which can be adapted to a diverse range
of problems and which has an easily-used user interface. These grid systems require complicated data
structures and extensive run-time storage management. We need to be able to refer to the structures
abstractly in order to avoid error-prone repetition of lengthy expressions. For these reasons we have
designed a grid generation module M.E*S*H [21], a graphical editing system VOUS [16], and a
language Vorpal [20] We will describe these tools and their uses in the present context. The
interaction of the various components of the system is shown in Figure 4.

Ue VOUS

Visual Data Data Structures

•1M*E*S*H]

Specs

for t 0

Adaptive Vra

Grids ICode Generator
Grids

I pplication

Solvers

FIG. 4. ACM software system

M*E*S*H generates the required grids from the specifications of their bounding curves and sur-
faces, which are defined by the user in terms of Bezier constructs such as NURBS. The user interacts
with the system through VOUS to define the problem domain, and by providing an application solver.
The Adaptive Component Method (ACM), written in Vorpal and largely application-independent,
manages the generation of refinements and performs error estimation and interpolation between
grids. ACM makes use of M*E*S*H to generate refinement grids as needed, and it calls the user- 0
defined application solvers to update the solution on connected components. Although we currently
write most of our solvers in FORTRAN, it may be easier to do so in Vorpal in the future.

4. M*E*S*H.

4.1. Introduction. Numerical simulation of a flow is most convenient to implement if the flow
domain is rectangular and flat. A simple orthogonal rectilinear grid can be laid on the domain and I

3D COMPOSITE GRIDS IN COMPONENT ADAPTIVE METHODS 7

the discrete difference equations solved subject to the boundary conditions, which are easily and
accurately applied under such conditions. For non-rectilinear domains, the discretization should
ensure proper application of the physical data at the boundary in order not to generate spurious
solution components. The most general type of domain discretization that could be used is an
unstructured grid, as in finite element methods. The mesh elements can be either quadrilateral or
triangular (in 2D). The unstructured nature requires keeping track of a large amount of topological
adjacency information, creating a substantial storage overhead. While this directionally-unbiased
grid structure has certain advantages (applicability to a wide variety of domains, better algorithms
for load distribution for problem-solving on parallel machines etc.), at this point, there aren't very
many fast, accurate solvers available. Various researchers are working on the generation of triangular
and tetrahedral meshes around complex shapes using algorithms based on Delaunay triangulation
[2], [11].

To avoid the ,verhead problems and to be able to use the vast number of existing flow solvers
that require a more structured formulation, we use a boundary-conforming curvilinear grid to overlay
the domain. The gridlines are required to be nearly orthogonal so as to utilize the discretization
formulations (for the equations) with minimal error. A rectilinear grid in computational space is
then mapped to this curvilinear grid in physical space using a coordinate transformation. Various
types of algebraic, elliptic and hyperbolic grid generation algorithms can be used to achieve this
mapping.

However, it is often not possible to overlay the entire domain with a single grid since we would
like to avoid problems such as

(i) arbitrarily high/low loral gridline density dictated not by the physics, but by the geometry,
(ii) degeneracies in the transformation, when grid lines belonging to families which should be

nearly orthogonal are nearly parallel instead, and
(iii) singularities in the Jacobian of the transformation.

In 2D, for example, singularities are caused by the mapping of a rectangular region in the computa-
tional space to a region with a different number of corners in the physical space, since a continuous,
non-singular mapping cannot introduce new singularities (corners), nor smooth out existing ones.

These problems can be overcome by decomposing the domain into multiple regions, which are
then individually discretized while retaining control over gridline-orthogonality and density, ensuring
conformity to the physics of the problem. Curvilinear parallelepiped' grids are then formed in the
physical space by mapping an orthogonal parallelepiped grid in the computational space onto each
of these regions. The result of this tessellation of the physical domain is called a composite grid.
The flow equations are also correspondingly mapped using the metrics of the transformation. They
are then solved to the desired accuracy on the grids in the computational space, by using any of the
fast dedicated solvers which take advantage of the grids' orthogonal, structured nature.

While one can use either patched (with zero overlap) or overlapping component grids in a
composite grid, we chose the latter in our system due to its better functionality in terms of

(i) smoothness of the component grids,
(ii) topological flexibility, and

(iii) provision for moving domain boundaries.
During the global iteration, boundary information is exchanged by neighboring grids in the overlap
zones. After an internal iterative cycle is completed, the updated information on the interior grid
boundaries is interpolated from the interior of the proper overlapping grid and internal iterations
performed again. The global iteration proceeds until the solution achieves convergence everywhere.

One needs to emphasize here that this domain decomposition is implemented due to the geomet-
rical complezity of the original domain as opposed to other well-known reasons, such as achieving

' A curvilinear parallelepiped is defined as a polyhedral volume with six curvilinear quadrilateral faces; the faces

don't need to be planar.

8 VENKATA, SUHR, OLIGER, AND FERZIGER

computational speed-up with parallel processors or for dividing the domain into zones based on the
physical nature of the flow. Of course, our decomposition does not preclude sub-decompositions for
those reasons.

Composite grids were used by Atta and Vadyak [1] to solve the full-potential equation using a
composite-adaptive grid approach on overlapping grids. Rai ef al. describe a composite grid method
for the unsteady Euler equations using touching grids in [10] and for the compressible Navier-
Stokes equations using overlapping grids in [18]. In incompressible flows, because of the form of the
continuity equation, conservative exchange of information in the region of overlap becomes difficult
[13]. Henshaw and Cheshire [8], [5], [6] describe composite grid methods and their generation on
overlapping grids. Wijngaart [23] describes a composite grid method for incompressible flows in two
dimensions. This work follows the last and relates to flows in three dimensions.

We will first describe the various constructs that are created in our composite grid system to
convey the geometric and the boundary description of the flow problem into the system and to
enable the grid generation. We will then discuss some related issues that arise from our use of the
multiple grids.

4.2. Data Structures of the Composite Grid. Given a complex three-dimensional domain
in physical space and the flow problem described therein, the grid generation procedure consists of
the following steps:

(i) incorporating the geometric data, which constitutes the domain description, into the corn-
posite grid system,

(ii) specifying the boundary conditions applied to the equations that describe the flow problem,
and

(iii) generating the set of discrete grids along with all the associated metrics as well as the
boundary information.

We will now describe the various constructs employed in this procedure illustrating them in a
simple, hypothetical 3D back-step flow domain in Figures 5 and 9.

4.2.1. Surfaces. The domain in physical space is divided into regions which are called volumes.
These volumes are defined by their bounding _ ,rfaces, each of which is a curvilinear quadrilateral.
In most instances, these surfaces can be defined by their bounding curves. A curve is any segment of
the boundary contour of the domain that is parameterized by a single parameter. Thus, a curve is
strictly a geometric feature. Once a surface is defined by specifying its bounding curves, an algebraic
grid generation method, such as transfinite interpolation of these curves, results in a definition of
the interior of the surface. Thus, knowing the parametric definition of each curve (which establishes
the mapping between the curve parameter and the physical coordinates at every point along the
curve), as well as the interpolation function from the edges into the interior of the surface, one can
establish the relation between the parametric coordinates and the physical coordinates at any point
on the surface, i.e. parameterize the surface.

While the algebraic grid generation is a fast and efficient algorithm to generate the interior
parametrization from the boundary data, in some instances, one needs more control over the smooth-
ness and distributior of the gridlines in the interior. In such cases, as in narrow regions, we use
elliptic grid generation. A Laplacian or a Poisson (with suitably chosen control tunctions) system of
partial differential equations with the curvilinear coordinates as the dependent variables is assembled
and solved iteratively. The interior generated by the transfinite interpolation technique is used as
the initial guess for this iterative solution.

A surface with important interior features may also be more directly defined as a tensor product
surface (a surface formed by the sweep of a Bdzier curve, with each of its control points moving along
Bezier curves), a bicubic B-Spline surface (a surface composed of a collection of bicubic patches,
with continuity conditions similar to those used in B-Splines) or by explicitly providing an external

0p

3D COMPOSITE GRIDS IN COMPONENT ADAPTIVE METHODS 9

Surface

FIG. 5. Physcal Problem -- Geometry and Boundary Data

description. The surface construct contains only the geometric definition of the boundaries of the
volume, and carries no data pertaining to the boundary conditions.

[trans finite interpolation between curves
surface = (one.of) bicubic B-Spline

elliptic or external definition

FIG. 6. De.-ription of a surface

4.2.2. Curves. From the above description, it is evident that the types of constructs allowed
for the definition of the curve largely determine the ease and range of applicability of our composite
grid system to practical domains. We chose the B~zier family of curves, such as

(i) B~zier curves-for most normal curves,
(ii) B-Splines-for curves of a higher degree, and

(iii) NURBS (Non Uniform Rational B-_Splines)-for conics and other rational curves.
as the prinicry means of representation of curves in our system. We will now briefly describe the
properties of these curves and the reasons for our choice [7].

1. A Bezier curve is defined by the following 2

de Casteljau algorithm:
Given: b0,•l ... ,b E E 3 and t E W, set

b(t) = (1- t)b-(t) + tb'-1(t) r _ 1 . n
I 1 +1 i 0,...,n -- r

and b'(t) = bi. Then b'(1) is the point with parameter value t on the Bizier curve bV. The polygon
P formed by b0 ... , bno is called the Bizier polygon or the control polygon of the curve b. and the

2E" is the n-dimensional Euclidean (or point) space and R' is the m-dimensional linear (or vector) space

10 VENKATA. SUHR. OLIGER, AND FERZIGERt

polygon vertices b, are called the Bizier points. Since the Bezier curve is thus recursively composed of
convex "'Prycentric combinations (all weights are non-negative and sum to one), it has the following
prop I. les:

(i) convex hull property-the curve lies within the convex hull of the control points Since
,ne curve also has the vartaton dtmsnishmng 3 property, it is said to be shape preset-yng, i.e., wild
wiggles not inherent in the data will not arise during curve fitting.

(ii) affine invariance-the curve is invariant under an affline transformation (involving just
translation, rotation, stretching and shear). This implies that the Bezier curve resulting from a set

of mapped points is the same as that resulting from a mapping of the original curve itself. This feat ure
allows us to avoid redundant specification of curves in the system by using affine transformations of
existing curves instead, if possible. By thus reducing th• number of primitive objects to be explicitly
defined, we can reduce the number of man-hours req ired to geometrically specify the domain, a
human-intensive process at this point in time.

(iii) symmetry-replacing t by (1 - f) has no effect on the curve.
(iv) pseudo-local control-when one of the control vertices is moved, though the whole curve

changes. the effect is mostly local.
2. Modeling a curve of a complex shape by use of a single Bdzier curve requires a representation

of high degree, which is undesirable from a computational standpoint. In such cases, we use splint
curves which are ptecewise polynomial curves. In particular, a spline curve, composed of Bezier
curve segments, which is specified by using a minimal information set is caled a B-Splne. The

information to be specified is minimized by utilizing the C" continuity conditions to evaluate the
junction points. The B-Spline possesses all of the advantages of the Bezier curve and, in addition.
has more localized control along with the ability to represent more complex shapes.

3. However, a B-Spline cannot represent conics, which are a very popular design tool in in-
dustry. To represent these and other rational curves, we use NURBS, which make use of the idea
that a conic section in E2 can be defined as the projection of a parabola in E3 into a plane Since
a NURB is defined in 3D as the projection through the origin of a 4D nonrational B-spline curve
into the hyperplane ui = 1, it has the ability to represent conics. It also ha& all the aforementioned
properties of Bezier curves in addition to greater localized control.

4. The BWzier constructs appear to be a natural choice since these are the representations that
are most often used in the CAD industry to design the domains on which we solve our flow problems.
However, in addition to the above constructs, we also provide for non-Bdzier parametric polynomial
representations of curves, to be used where convenient.

4.2.3. Subsurfaces. We have described the means by which geometric: domain data is input
into the system The physical connection to the flow problem is established via the concept of
subsurfacts. A surface is composed of a tessellation of one or more subsurfaces, each of which has

(phaysical role) i
(u, Urmn, Umar)

subsurface = parametric interval (two-of) (0, -m.n, Vmar)
I(Ut'. UIt'.a, W'mar)

surfaceparent

FIG. 7. Deseriptiotn of a subsurface

exactly one physical role to play in the flow problem. For example, one part of a surface might be a

aaserts that a convex polygon generates a convex curve

3D COMPOSITE GRIDS IN COMPONENT ADAPTIVE METHODS II

physical boundary, while another part could be a periodic boundary. Those surfaces, or parts thereof,
which are not part of the domain boundaries, but are artificially introduced during the division of
the domain into volumes are initially given the role of an auxiliary boundary. For the boundary-role
specification to be complete, each auxiliary boundary has to be further specified as an interpolation
boundary, periodic boundary, reentrant boundary etc.

Thus, a subsurface is defined in terms of its parent surface, the parametric intervals it occupies
within the parent surface and its physical role. Associated with each of these roles is a means of
describing and enforcing that particular boundary role in terms of the variables of the flow problem.
The specification of the surfaces and subsurfaces completes the description of the flow problem in

[physical boundary 1
physical role = (one.of) periodic boundary

reentrant boundary
interpolntion boundary

Fic. 8. Description of a physical role

ihe physical space. We nw proceed to the computational space and generate the grids along with
all of the require(] flow information.

4.2.4. Faces. The domain in the discrete space is described in terms of grids. The grids are
defined in terms of their bounding faces, each of which is a quadrilateral region, curvilinear in
physical space and rectilinear in computational space. A grid face is constructed by a tessellation
of subsurfaces with one continuous parameterization. The parameterization of the face is defined
by linearly rescaling the parameterization of the component subsurfaces (which are defined with
respect to their parent surfaces). The boundaries of the face are first parameterized in this fashion
Transfinite interpolation is then employed first to obtain a parameterization of the interior of each
face from its boundaries and then of the interior of the grid from its bounding faces This establishes
the coordinate transformation from an orthogonal parallelepiped grid in computational coordinates
(u.e. u-) to the curvilinear parallelepiped grid in physical coordinates (x,y, z). The metrics of the
transformation are also computed.

The subsurfaces that comprise a face need not necessarily be from the same surface, they need
only be contiguous in physical space. Also, a subsurface can be a component of more than one face.
as in the overlap region between two grids. Thus, a subsurface, which imparts the flow boundary
information to a surface, also provides the geometric description of the face. This duality aids in
conducting information from the physical problem to the numerical problem.

For the information exchange to be accurate, it is very important to insure that a pair of
overlapping grids refer precisely to the same physical location in the overlap zone. One could
conceive of a situation where two overlapping regions have differing geometric definitions of the
overlap zone. as a result of which supposedly coincident locations do not actually coincide. This
gives rise to inaccuracies during information transfer. However, in the present system, all of the
overlapping components get identical geometric definitions of the overlap zone (which is subject to
the accuracies of the individual parameterizations), since the same subsurface brings the geometric
information to the relevant face of each component grid. It is important to keep this issue in mind
during the inverse transformations also.

4.2.5. Subfaces. So far. we have only provided a means to transfer the geometrical description
from physical space to computational space. We now introduce the concept of subfaces to facilitate
the transfer of flow boundary information to computational space. The subfaces are contiguous parts

12 VENKATA, SUHR, OLIGER, AND FERZIGER

Subfaces

Face

FIG. 9. Numerical Problem--Geometry and Boundary Data

of a face, each with exactly one role: physical boundary, periodic boundary, interpolation boundary
etc.

Thus, if contiguous subsurfaces comprising a face (but from different surfaces) have the same
boundary role, they would together form a single subface with that role and the associated means
of enforcing that boundary condition, be it applying a physical boundary condition or getting the
necessary information from a donor grid. Analogous to a subsurface, a subface is defined in terms
of its parent face, the parametric interval it occupies in the parent face, and its role. Where the
role is that of a physical boundary. we use a strongly functionally consistent [23] application of the
boundary condition, i.e., we do apply the physical boundary condition at all points that lie on the
domain boundaries. This is necessary to ensure that the solution converges both in the numerical
as well as the physical sense, to the proper result. Where the role is that of a periodic boundary, an
affine transformation linking the target and donor points is specified, so that the boundary condition
at the target point can be obtained by evaluating the corresponding operator at the donor point.
The process is the same in the case of an interpolation boundary, except that the communication is
always between different grids.

For every grid, we also specify the number of grid cells in each coordinate direction.

((numerical role)
(U, Umin , Umaz)

sub face = parametric interval (two.of) (v, vmin, vmar)
S(w ,Wmn, wmar)

faCeparent

FIG. 10. Description of a subface

@ • •• • •• •

3D COMPOSITE GRIDS IN COMPONENT ADAPTIVE METHODS 13

4.3. Summary of grid generation constructs. To summarize:
(i) curves and surfaces are purely geometric features employed to input the geometric descrip-

tion of the domain into the system.
(ii) subsurfaces serve to provide the flow boundary information to the physical problem and

the geometrical information to the numerical problem.
(iii) subfaces provide the flow boundary information to the numerical problem.

II I physical problem I numerical problem II
geometrical info surfaces subsurfaces
boundary info subsurfaces sub faces

TABLE 1
Functions of the constructs used in prgd generstion

subfacel l1

facen = subsurfacell1

grid1
subsurface, Ji

face1 2 =

facelm =
(number of grid cells(u, v, uw))

subface211

Composite grid = -= su6jface211
face subsurfaCe21 1

gridI subsurface2in

face 2 2 =

facet2 , =

(number of grid cells(u, v, u))
g r id

surface,

surfaces = surface2[. surfacer

FIG. 11. Hierarchical description of a composite grid

4.4. Communication between Grids. For the exchange of information at the interpolation
boundaries in the overlap zone of two overlapping component grids, the solver for a connected
component can use a variant of the Schwartz Alternating Procedure (19]. This algorithm, applied to
two overlapping domains Q, and (02. consists of

(i) starting from initial conditions as the boundary values on the edge of Q1 in the overlap
region (thus decoupling the problem),

S 0 0 0 0 0 0 0 0

P 0lTi P I I

14 VENKATA, SUHR, OLIGER, AND FERZIGER 4

MI+

FiG. 12. Composite grid-only gridlnes on faces shown

(ii) computing the solution in the interior of Q1,
(iii) obtaining boundary values on the edge of Q2 in the overlap region from the interior of Q1 ,
(iv) computing the solution in the interior of Q 2 ,
(v) using this interior solution to determine the boundary values on the edge of QI.

(vi) repeating the cycle till convergence.
We note that no special routines are needed to solve the interface equations, since boundary values
are interpolated directly between grids. The convergence of this algorithm has been analyzed by
many researchers. Oliger et al. [9] found that the strong dependence of the convergence of the
algorithm on the amount of overlap can be reduced for elliptic problems using an overrelaxation
technique for the boundary values.

'[he order in which the various component grids are traversed in a connected component depends
upon the direction of information exchange between the grids, and thus on the physics. Either an
explicit order is provided by the user, or a traversal algorithm based on a suitable criterion is
supplied. The ordering also affects the suitability of the procedure for parallel processing. Oliger cI
al. introduce a Black-Red scheme in [9] that is suited for multi-processor machines.

4.5. Coordinate inversion. As mentioned before, the mapping is from computational space
to physical space. However, the problem of obtaining the computational coordinates (u. v. u) given
the physical coordinates (z, y. z) at a point also arises often during the course of the solution, e.g. in
interpolation within the overlap zone. Since the original mapping is non-linear, an iterative technique
is employed and the convergence depends on the initial guess. For most grids, the algorithm for
determining the initial guess is as follows:

(i) A lookup table consisting of the physical and computational coordinate pairs of a set of
r~frr(uc(points in each component grid is assembled. The choice of the reference points can be

3D COMPOSITE GRIDS IN COMPONENT ADAPTIVE METHOD'S 15 4
individually specified for each grid, if need be. The default choice consists of the corners and the
midpoints of the bounding contours of the grid. The logic behind this choice is the fact that most of
the target points are close to the boundary contours, since they belong to the overlap zones which
are adjacent to the boundaries.

(ii) Given the (z, y, z) coordinates of the target point, the two nearest neighbors among the
reference points are ascertained. Their midpoint is taken as the initial guess.

(iii) If the grid is such that it is wrapped very near to itself, causing potential false choices
for the initial guess, the user can specify a different algorithm, to localize the search area, where a
quad-tree approach is used while walking along the boundary contours.

5. VOUS. A natural data structure to use for the description of domains, for our grid structures
and programs is the directed graph. With this in mind, VOUS [16], an interactive, object-oriented,
graphical editing system, was developed to provide a platform for the user to organize programs and
data as graphs and execute functions on these objects.

The hierarchical nature of the composite grids lends itself to an easy and natural representation
as a directed graph. The interfaces between the modules are defined in terms of LISP s-expressions
[17] which are convenient and are standard representations for graphs. The domain can be specified
as a hierarchical list where the first atom in each list specifies the object to be described in its
sublist. Thus, we have a powerful means of representation of the entire domain for future manip-
ulations. Subsequent addition or deletion of other constructs is also made convenient through this
data organization.

In order to enable VOUS to serve as a graphical interface between the user and the rest of the
system, its design has been extended to include drawing tools and several other features to aid in
the specification of curves and surfaces and to ease the interaction between the user and the rest of
the system.

(i) The user will input the geometric data for the curves, surfaces and other constructs into
VOUS, which can provide a step-by-step guide to insure that all necessary parameters are input.
The data can be interactively input and can also be read from previously constructed files. Once a
construct is fully described, VOUS will interact with M*E*S*H to compute and graphically display
the construct to the user, thus providing a platform for iterative definition of the geometry of the
entire domain.

(ii) If the user needs to specify the intersection curve of two surfaces (say, as a bounding curve),
VOUS can call the corresponding routine (e.g. B1zier intersection subroutines).

(iii) VOUS will provide the functionality for zooming in/out of regions of interest as well as
perform affine transformations such as translation, rotation etc. of the constructs.

(iv) At every point in the process, the user will have access to the options available as well as
the relevant help-files.
At the end of the problem specification, VOUS will organize the input data into a data structure
that is read by M*E*S*H1, which then computes the various component grids and assembles the
composite grid required by ACM.

6. Vorpal. Vorpal is a programming language designed for the implementation of ACM and
other scientific applications with similar requirements. It supports

(i) high-level data structures such as directed graphs,
(ii) unusual data abstractions such as curvilinear stairstep grids,

(iii) structured input and output streams,
(iv) modular program structure,
(v) parametric program instantiation, and

(vi) interactive execution.
We anticipate that the implementation of ACM and Vorpal will proceed in parallel, and that the
final design of Vorpal will be influenced by our experience with the implementation of ACM.

16 VENKATA, SUHR, OLIGER, AND FERZIGER

The compiler for Vorpal will be a preprocessor which produces C++ code as its output. In a
UNIX operating environment, where C and FORTRAN code are compatible, ACM and other Vorpal
programs can have access to FORTRAN common blocks, and they can make use of subprograms
written in FORTRAN and C as well as Vorpal.

Type constructors in Vorpal can be applied recursively and freely. The structure of input and
output data can be defined in the same way as the structure of internal data. An object whose
type is defined with value-like type constructors such as array or set will have a value which can
be stored externally as well as internally. The value of such an object can be printed or read by a
single operation, in a form which can be incorporated directly into a program source file as a data
constructor. A LISP-like form and a binary form for external data will also be available, and explicit
traversal of input or output streams will be allowed.

The initial implementation of a subset of Vorpal will focus on its modular structure and its
support for a few predefined high-level type constructors. In addition to the integrated support
for input and output, some other central features of this preliminary implementation will be the
automation of memory allocation and the integrated support of operations on user-defined data
types. The preliminary implementation of Vorpal will first be applied to simple model problems in
an experimental version of ACM.

As Vorpal and ACM become more complete, Vorpal will include support for user-defined type
constructors and for generation of Vorpal code in response to user-supplied dats For example, a
user with a need for a particular kind of staggered grid should be able to provide a description of
the staggering in the grid, from which a custom version of ACM will be constructed automatically.
Finally, to increase the level of support for interactivity, and eventually to support concurrent
execution, internal processes within a single UNIX process will be simulated. Active objects such as
functions and processes can be referred to by variables and used in an object-oriented way.

7. Summary. We have described a software system, composed of a grid generation module
M*E*S*H, which is built upon a variety of BNzier constructs, an interactive input/visualization
module VOUS, and a language VORPAL with special features designed to be useful in scientific
computing applications. We have also described the procedure for the generation of the component
grids and their adaptive refinement during the course of the solution. To validate the composite grid
generation and communication methodologies, we are currently solving some steady-state, incom-
pressible flows in three-dimensional domains with complex geometries, using a Navier-Stokes solver
that utilizes the pseudo-compressibility method [12] and an approximate factorization scheme.

8. Bibliography.
REFERENCES

[1] E. H. ATTA AND J. VADYAK, A Grid Overlapping Scheme for Flowfield Computations About Mults.
component Configurations, AIAA Journal, 21 (1983), pp. 1271-1277.

[2] T. BAKER, Mesh Generation for the Computation of Flowfields Over Complex Aerodynamic Shapes,
Computers Math. Applic., 24 (1992), pp. 103-127.

[3] M. BERGER AND J. OLIGER, Adaptive methods for hyperbolic partial differential equations , J. Comp.
Phys.. 53 (1984), pp. 484-512.

141 G. BROWNING, H. -0. KREISS, AND J. OLIGER, Mesh refinement, Math. Comp., 27 (1973), pp. 29-39.

3D COMPOSITE GRIDS IN COMPONENT ADAPTIVE METHODS 17 4
[5] G. CHESSHIRE, Composite Grid Construction and Applications , Ph.D. Thesis, California Institute of

Technology, Pasadena, CA, 1986
[6] G. CHESSHIRE AND W. D. HENSHAW, Composite Overlapping Meshes for the Solution of Partial Dif-

ferential Equations, J. Comp. Phys., 90 (1990), pp. 1-64.
[7] G. FARIN, Curves and Surfaces for Computer Aided Geometric Design-A Practical Guide, Academic

Press, Inc., San Diego. CA 92101, 1988.
[8] W. D. HENSHAW, Part I: The Numerical Solution of Hyperbolic Systems of Conservation Laws; Part

II: Composite Overlapping Grid Techniques, Ph. D. Thesis, California Institute of Technology,
Pasadena, CA, 1985

[9] J. OLIGER, W. SKAMAROCK, AND W. TANG, Convergence Analysis and Acceleration of the Schwartz
Alternating Method, CLaSSiC Project Manuscript CLaSSiC-86-12, Stanford University, 1986.

[10] K. A. HESSENIUS AND M. M. RAI, Applications of a Conservative Zonal Scheme to Transient and
Geometrically Compler Problems, Computers and Fluids, 14 (1986), pp. 43-58.

[11] Z. JOHAN, T. J. R. HUGHES, K. K. MATHUR, S. L. JOHNSSON, A Data Parallel Finite Element Method
for Computational Fluid Dynamics on the Connection Machine System, Computer Methods in
Applied Mechanics and Engineering, 99 (1992), pp. 113-134.

[12] D. KWAK, J. L. C. CHANG, S. P. SHANKS, AND S. R. CHAKRAVARTHY, A Three-Dimensional In-
compressible Navier-Stokes Flow Solver Using Primitive Variables, AIAA Journal, 24 (1986),
pp. 390-396.

[13] R. L. MEAKIN, Application of Boundary Conforming Coordinate and Domain Decomposition Princi-
ples to Environmental Flows, Ph. D. Thesis, Stanford University, CA, 1986.

[14] J. OLIGER, Stability and error control for component adaptive grid methods, Proc. of the IMA Work-
shop on Modeling, Mesh Generation, and Adaptive Numerical Methods for PDEs, Springer Verlag,
NY, 1993.

[15] J. OLIGER, W. SKAMAROCK, AND R. L. STREET, Adaptive grid refinement for numerical weather
prediction, J. Comp. Phys., 80 (1989), pp. 27-60.

[16] J. OLIGER, R. PICHUMANI, AND D. PONCELE6N, A Visual Object-Oriented Unification System, CLaS-
SiC Project Manuscript CLaSSiC-89-23, Stanford University, CA, 1989.

[17] R. PICHUMANI, J. OLIGER, AND R. G. VENKATA, Symbolic Expressions of Composite Grid Structures,
CLaSSiC Project Manuscript CLaSSiC-90-25, Stanford University, CA, 1990.

[18] M. M. RAI, Navier-Stokes Simulations of Rotor/Stator Interaction Using Patched and Overlaid Grids,
Journal of Propulsion, 3 (1987), pp. 387-396.

[19] H. A. SCHWARTZ, Uber einige Abbildungsaufgaben, Journal fiir die Reine und Angewandte Mathematik.
70 (1869), pp. 105-120.

[20] S. SuHR, The Vorpal language for Scientific Computing, Applied to Adaptive Grid Generation, Ph.
D. Thesis (in preparation), Department of Computer Science, Stanford University, CA.

[21] R. G. VENKATA, J. OLIGER, AND J. H. FERZIGER, Composite Grids for Flow Computations on Compler
3D Domains, Proc. of the Fifth SIAM Conf. on Domain Decomp. Methods for Partial Differential
Equations, (1991), pp. 605-613.

[22] R. G. VENKATA, Three-dimensional Composite Grid Generation using Bezier Family of Curves and
Surfaces, Second SIAM Conf. on Geom. Design, (1991).

[23] R. F. WIJNGAART, Composite-Grid Techniques and Adaptive Mesh Refinement in Computational
Fluid Dynamics, Ph. D. Thesis, Department of Mechanical Engineering, Stanford University, CA,
1989.

• • • •• Q '

